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ABSTRACT 

Advanced driver assistance systems and outdoor video surveillance very often need to 

classify the detected objects/obstacles. In this context several works have presented and 

have tested some graph-based methods. Motivated by the prominence of deep neural 

networks, which surpass the performance of the previous dominating paradigm, we are 

going to apply him in the classification of images by using the local binary pattern (LBP) 

histograms, to our knowledge, our work is the only one to propose this conduct. We go to 

see that the results are very promising besides the fact that the construction of such a model 

is possible also in a massive data context.  
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1. INTRODUCTION

Advanced driver assistance systems and outdoor video 

surveillance very often need to classify the detected 

objects/obstacles. The considered classes (labels) are the 

various answers according to the degree of the situation 

importance. The information of classification can be 

integrated into the global architecture of the navigation 

assistance for example in obstacle avoidance, a module/object 

following etc. In the systems of driver assistance for the 

commercial cars, the information of classification can be used 

to trigger alarms or the corresponding action [5]. There were 

two main categories of approaches developed based on the 

visual data, the first one uses a trained detector for a specific 

class [9]. The second category of approach makes a detection 

phase before considering the class of the detected object. The 

first category of approach can be applied when the application 

concentrates on a single class, nevertheless, it becomes 

difficult to apply when there are several classes to be 

simultaneously considered. The second category of approach 

can be deployed according to the number of classes which the 

system will have to recognize. 

In this context several works have presented and have tested 

some graph-based methods as the K Nearest Neighbor method 

(KNN), the Locally Linear Embedding (LLE) and the Two 

phase weighted regularized least square graph construction 

(TPWRLS) etc. [5-8, 13, 20]. Motivated by the prominence of 

deep neural networks, which surpass the performance of the 

previous dominant paradigm [4, 11, 17, 19], we suggest 

applying it in the classification of images by using the local 

binary pattern (LBP) histogram [12]. Several works [5-8, 13, 

20] has shown the effectiveness of using the notion of lbp

patterns frequencies (histogram) (Figure 2) for images

classification. This behavior can reduce the number of features

to 59 when using only lbp uniform patterns (regardless of the

size of the images).

The deep learning proposes several architectures which can 

be used according to the context. The most general of them is 

called "Deep feedforward neural network (DFFNN)" [10], its 

name badge the obligation that neurons have only a forward 

distribution (Figure 1). The performances of this architecture 

already exceed the machine learning classic dominant 

paradigms (gaussian mixture model, naïve Bayesian classifier, 

decision trees, knn etc.) in several applications [4, 11, 17, 19], 

in this sense, we have chosen to start with this non-specialized 

architecture and we are leaving open the option to the use of 

other architectures in case of unsatisfactory results. 

The remainder of this paper was organized as follows. 

Section 2 was devoted to the DFFNN and their architecture. 

However, the LBP was introduced in Section 3 before dealing 

with methodologies and performance evaluation in Section 4. 

Our conclusion and perspectives were drawn in the last section. 

2. DEEP FEEDFORWARD DEEP NEURAL NETWORK

(DFFNN)

The deep learning is a set of machine learning methods 

allowing to model data with a high level of abstraction. It is 

based on articulate architectures of various transformations in 

the no linear space [2]. Is considered a part (or a complement) 

to the Big Data domain. Current interest for the deep learning 

is not only for his conceptual advances but also for the 

technological advancess, indeed, all the actually available 

serious solutions (in terms of models learning) are capable to 

exploit the immense reservoir of power computing established 

through actual modern computers, as well by requesting the 

main processor (CPU) that the graphic dedicated processors 

(GPU). A model Big Data is capable of adapting itself when 

there is an enormous volume of data to be handled or when 

there is an enormous sequential treatment numbers exceeding 

the most powerful servers capacities [22]. 

Recent findings in the field of image and speech recognition 

have shown that significant accuracy improvements over 

classical schemes (as gaussian mixture model, decision trees, 

KNN etc.) can be achieved through the use of DFFNN [4, 11, 
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17, 19]. DFFNN can be used as classifiers that directly 

estimate class posterior scores. Among the most important 

advantages of DFFNN is their multilevel distributed 

representation of the model's input data [11].  

This fact makes the DFFNN an exponentially more compact 

model than GMMs. Further, DFFNN do not impose 

assumptions on the input data distribution [17] and have 

proven successful in exploiting large amounts of data, 

achieving more robust models without lapsing into 

overtraining. All of these factors motivate the use of DFFNN 

for outdoor object categorization. 

 

 
 

Figure 1. Example of deep feedforward neural network 

 

The DFFNN system used in this work is a fully-connected 

feed-forward neural network with rectified linear units (ReLU) 

[21].  
Thus, an input at level j, xj, is mapped to its corresponding 

activation yj (input of the layer above) as:  

 

𝑦𝑗 = 𝑅𝑒𝐿𝑈(𝑥𝑗) = max(0, 𝑥𝑗)                                              (1) 

 

𝑥𝑗 =𝑏𝑗 + ∑ 𝑤𝑖𝑗𝑦𝑖𝑖                                                                              (2) 

 
where i is an index over the units of the layer below and bj is 

the bias of the unit j. 
The output layer is then configured as a softmax, where 

hidden units map input yj to a class probability pj in the form: 

 

𝑝𝑗 =
𝑒𝑥𝑝(𝑦𝑗)

∑ 𝑒𝑥𝑝(𝑦𝑙)𝑙
                                                                                    (3) 

 
where l is an index over all of the target classes. 

As a cost function for backpropagating gradients in the 

training stage, we use the cross-entropy function defined as: 

 

𝐶 =−∑ 𝑡𝑗 𝑙𝑜𝑔 𝑝𝑗𝑗                                                                             (4) 

 
where tj represents the target probability of the class j for the 

current evaluated example, taking a value of either 1 (true 

class) or 0 (false class) [16]. 
 

 

3. LOCAL BINARY PATTERNS 
 

The original LBP operator labels the pixels of an image with 

decimal numbers, which are called LBPs or LBP codes that 

encode the local structure around each pixel [12]. It proceeds 

thus, as illustrated in Figure 2a: Each pixel is compared with 

its eight neighbors in a neighborhood by subtracting the central 

pixel value; the resulting strictly negative values are encoded 

with 0, and the others with 1. For each given pixel, a binary 

number is obtained by concatenating all these binary values in 

a clockwise direction, which starts from the one of its top-left 

neighbors. The corresponding decimal value of the generated 

binary number is then used for labeling the given pixel. The 

histogram of LBP labels (the frequency of occurrence of each 

code) calculated over a region or an image can be used as a 

texture descriptor [5].  

The neighbors of the central pixel can be simply the direct 

neighbors (radius=1) or in other cases the 2 units apart pixels 

neighbors (radius = 2) or even the 3 units apart pixels 

neighbors (radius = 3). The neighbor numbers can vary also, 8 

at the most if the radius is equal to 1 and more from the radius 

2. We have chosen during this work to opt for a number of 

neighbors equal to 8 with the 3 first possible radius (r = 1, r = 

2 and r = 3). We can, in future research, test more 

combinations with a more important number of neighborhood. 

 

 
 

Figure 2. LBP from input to histogram 

 

 

4. METHODOLOGIES AND PERFORMANCE 

EVALUATION  

 

Usually, when using different deep learning architectures in 

image recognition, the input often used is the different pixels 

forming images. The number of elements in input may be quite 

important, for example, an image with a 1000/1000 size will 

be considered as an input with 1000000 entries, which may be 

a problem during learning process especially when you have a 

massive data. Several works [5-8, 13, 20] has shown the 

effectiveness of using the notion of lbp patterns frequencies 

(histogram) (Figure 2) to build a graph-based models for 

classification. This behavior can reduce the number of entries 

to 59 when using only lbp uniform patterns (regardless of the 

size of the images). The Figure 3 shows the different cases 

where the pattern can be uniform (a one single change of the 

binary digits). We propose in our work to use this pipe but with 

the DFFNN instead of simple graph-based methods used in the 

specialized literature.  

We are going to evaluate DFFNN architecture (Codes are 

developed in python 3.6 with Tensorflow Backend) for the 

objects categorization by means of the cross-validation 

scheme that is commonly used in the domain of pattern 

recognition. To this end, the whole data set is split into two 

parts: a part with known labels (usually called training set) and 

a part with unknown labels (called test set). Note that the 

ground-truth labels of the latter set are used in order to estimate 

the rate of correct classification. The accuracy of label 

inference is evaluated by comparing the estimated labels with 

the ground-truth ones. This process is repeated ten times in 
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order to get statistical stability in the evaluation of the given 

formalism. In each trial, the set is randomly split into a labeled 

part and an unlabeled part. The accuracy is given as an average 

over the ten random splits. Objects can be captured by either a 

surveillance camera or an onboard camera. We assume that the 

detection of the image regions containing the object is carried 

out by an algorithm as those described in [1, 14-15] for the 

case of surveillance cameras or by the algorithms of detection 

and tracking as those described in [3, 18] for the case of an 

onboard camera. 

 

 
 

Figure 3. Uniform LBP pattern 

 
In the following part, we are going to present a quantitative 

evaluation comparing the DFFNN and some graph-based 

methods in the task of objects categorization [5-8, 13, 20]. This 

conduct is applied, firstly, to outdoor object categorization 

using a first public outdoor image dataset, and secondly, to 

object categorization using a second public dataset. We 

performed two groups of experiments. In the first group, we 

used images presenting three classes (Pedestrian, cars/vans, 

and motorbikes) (see Figure 4). The car and moto images were 

obtained from PASCAL VOC2011 Examples Images 

(http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/ex

amples/index). The pedestrian images are obtained from CVC-

01 (http://www.cvc.uab.es/adas) Classification Dataset 

(images, of this group of experiments, have variable sizes). We 

gathered 450 images (150 images per class) Their LBP 

descriptors were computed using the uniform patterns (r = 1, 

2 and 3 with a neighborhood equal to 8 in each case).  Table 

1, 2, 3 illustrates precision, recall and f1-measure, for each 

label, obtained by inferring DFFNNs models according to the 

different types de neighborhoods (see Figure 6 for more details 

concerning precision, recall and f1-measure formulas). 

 

 
 

Figure 4. Images presenting three classes (Pedestrian, 

cars/vans, and motorbikes) 

 

Table 4 illustrates the accuracy obtained with DFFNN and 

some graph-based methods (knn, LLE, TPWRLS) applied on 

the same dataset. These are average results that correspond to 

ten runs of the recognition algorithm with random partitions 

for labeled and unlabeled samples. To note that the correct 

classifications rate of this some graph-based methods (on the 

same databases) were taken from [5] tests. 

 

Table 1. Precision, recall and f1-measure, for radius = 1, 

obtained by inferring DFFNN model 

 
r = 1 Precision recall f1-score 

Cars/Vans 100 100 100 

Motos 100 100 100 

Pedestrians 100 100 100 

Average 100 100 100 

 

Table 2. Precision, recall and f1-measure, for radius = 2, 

obtained by inferring DFFNN model 

 
r = 2 precision recall f1-score 

Cars/Vans 98,3 98,7 98,4 

Motos 98,6 98,5 98,4 

Pedestrians 100 99,7 99,8 

Average 98,96 98,96 98,86 

 

Table 3. Precision, recall and f1-measure, for radius = 3, 

obtained by inferring DFFNN model 

 
r =3 precision recall f1-score 

Cars/Vans 95,2 99,3 97,2 

Motos 99,3 95,2 97,1 

Pedestrians 100 100 100 

Average 98,16 98,16 98,1 

 

Table 4. Average accuracy (first database) 

 
Data bases 1 R = 1 R = 2 R = 3 

KNN 90,9 95,9 95,8 

LLE 93,8 96,5 97,3 

TPWRLS 95,7 97,9 97,5 

DFFNN 100 98,966 98,166 

 

We can observe that the accuracy is much better than those 

of the graph-based methods already used in this context, 

indeed, the results are even perfect for r=1. The results of 

precision, recall and of f1-measure are very close to 100% for 

r=1 and r=2, nevertheless, their precision begins to slightly 

yield from r=3. We can conclude that there is really a clear 

results improvement by using the DFFNN. We still have to 

validate this improvement with the second database. 

 

 
 

Figure 5. Object images presenting a wide variety of 

complex geometry characteristics 
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For the second group of experiments, the COIL-20 

(http://www.cs.columbia.edu/CAVE/software/softlib/coil-

20.php)  database (Columbia Object Image Library) consists 

of 1440 images of 20 objects (images, of this group of 

experiment, have the same size). Each object has 72 images 

(each object has underwent 72 rotations). The object presents 

a wide variety of complex geometry characteristics. Some 

examples are shown in Figure 5. Their LBP descriptors have 

computed using the uniform patterns (r=1, 2 et 3 with a 

neighborhood equal to 8 in each case). Table 5,6,7 illustrates 

precision, recall and f1-measure, for each label, obtained by 

inferring DFFNNs models according to the different types de 

neighborhoods.  
 

 
 

Figure 6. Precision, recall and f1-measure formulas. 

 
Table 5. Precision, recall and f1-measure, for radius = 1, 

obtained by inferring DFFNN model 

 
r = 1 Precision recall f1-score 

Object 1 100 100 100 

Object 2 100 98,8 99,3 

Object 3 100 100 100 

Object 4 100 100 100 

Object 5 98,7 99,3 98,9 

Object 6 100 98,8 99,3 

Object 7 99,5 100 99,7 

Object 8 100 100 100 

Object 9 99,3 100 99,6 

Object 10 100 100 100 

Object 11 100 99,4 99,7 

Object 12 100 100 100 

Object 13 100 100 100 

Object 14 100 100 100 

Object 15 100 100 100 

Object 16 100 100 100 

Object 17 100 100 100 

Object 18 100 100 100 

Object 19 98,6 100 99,2 

Object 20 100 100 100 

Average 99,805 99,815 99,8 

 

Table 6. Precision, recall and f1-measure, for radius = 1, 

obtained by inferring DFFNN model 

 
r = 2 Precision recall f1-score 

Object 1 100 100 100 

Object 2 100 100 100 

Object 3 100 100 100 

Object 4 100 100 100 

Object 5 100 100 100 

Object 6 99,3 100 99,6 

Object 7 100 100 100 

Object 8 100 100 100 

Object 9 100 100 100 

Object 10 100 100 100 

Object 11 100 100 100 

Object 12 100 100 100 

Object 13 100 100 100 

Object 14 100 100 100 

Object 15 100 100 100 

Object 16 100 100 100 

Object 17 100 100 100 

Object 18 100 100 100 

Object 19 100 99,3 99,6 

Object 20 100 100 100 

Average 99,965 99,965 99,96 

 

Table 7. Precision, recall and f1-measure, for radius = 1, 

obtained by inferring DFFNN model. 

 
r = 3 Precision recall f1-score 

Object 1 100 100 100 

Object 2 100 100 100 

Object 3 95,6 98,6 96,5 

Object 4 99,4 100 99,7 

Object 5 100 100 100 

Object 6 97,8 91,6 93,6 

Object 7 99,2 100 99,6 

Object 8 100 100 100 

Object 9 100 100 100 

Object 10 100 100 100 

Object 11 100 99,4 99,7 

Object 12 100 100 100 

Object 13 100 100 100 

Object 14 100 100 100 

Object 15 100 100 100 

Object 16 100 100 100 

Object 17 100 100 100 

Object 18 100 100 100 

Object 19 97,9 98,8 98,3 

Object 20 100 100 100 

Average 99,495 99,42 99,37 

 
Table 8 illustrates the accuracy obtained with DFFNN and 

some graph-based methods (knn, LLE, TPWRLS) applied on 

the same dataset. These are average results that correspond to 

ten runs of the recognition algorithm with random partitions 

for labeled and unlabeled samples. To note that the correct 

classifications rate of this some graph-based methods (on the 

same databases) were taken from [5] tests.  [5] considered 

according to their experiments that the results found with r=2 

and the neighborhood of 8 are best and that's why the results 

for r=1 and r=3 were not published. 
We can observe that the accuracy is much better than those 

of the graph-based methods already used in this context, 

indeed, the results are almost perfect for r = 1, r = 2 and even 

for r=3. The results of precision, recall and of f1-measure are 

very close to 100% for r=1 and r=2, nevertheless, their 
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precision begins to slightly yield from r=3. We can conclude 

that there is a really clear improvement of the results by using 

the DFFNN, this improvement is more sensitive on this 

database with regard to the first one. 

From our two-step experiments, we have been able to show 

the superiority of the DFFNNs compared to the graph-based 

methods used in this context. Among the strong points, too, of 

our conduct is that the construction of such a model is very 

feasible also in a massive data context. 

 

Table 8. Average accuracy (second database) 

 
Second database R = 1 R = 2 R = 3 

KNN - 90,58 - 

LLE - 95 - 

TPWRLS - 97,33 - 

DFFNN 99,805 99,965 99,495 

 

 

5. CONCLUSIONS 

 

We have evaluated the DFFNN for the objects 

categorization with the cross-validation scheme that is 

commonly used in the domain of pattern recognition. Objects 

can be captured by either a surveillance camera or an onboard 

camera. In this work, we have presented a quantitative 

evaluation using the DFFNN and some graph-based methods 

schemes, applied, firstly to outdoor object categorization using 

a first public outdoor image dataset, and secondly, to object 

categorization using a second public dataset. From our two-

step experiments, we have been able to show the superiority of 

the DFFNNs compared to the graph-based methods used in 

this context. Among the strong points, too, of our conduct is 

that the construction of such a model is very feasible also in a 

massive data context. It is in our perspective for future 

research to test this architecture with other LBP neighborhood 

types on a real data captured directly from a surveillance 

camera or an onboard camera. 
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